Kamis, 17 Maret 2011

Bücher Herunterladen Advances in Financial Machine Learning

Bücher Herunterladen Advances in Financial Machine Learning

Wenn Sie verschiedene Mittel von der Gegenwart dieses Buch, um loszuwerden, wird es sicherlich Sie ungefähr. Dennoch sollten Sie wählen, welche eine, die sicherlich die kurze Zeit, bietet dieses Buch zu verwenden. Diese Website verwandelt sich in eine beraten, weil wir die Ressourcen und Checklisten von Führungen aus mehreren Ländern ganzen Welt immer bieten.

Advances in Financial Machine Learning

Advances in Financial Machine Learning


Advances in Financial Machine Learning


Bücher Herunterladen Advances in Financial Machine Learning

Wissen Sie, was die Vorteile des Lesens sind? Vor der Diskussion über Advances In Financial Machine Learning, werden wir Sie zunächst fragen. Genau das, was Sie erhalten Sie nach der Überprüfung? Genau das, was erhalten Sie nach Abschluss ein Buch bewerten? Genau das, was ist Ihr Gefühl? Nun, viele Anfragen wir sicherlich äußern Sie, die bemerkenswerten Buch-Enthusiasten, sowie Zuschauer. Wir erwarten, dass Sie bemerkenswert zu sein, da in diesem modernen Zeitalter, viele Menschen wählen, um mit verschiedenen anderen Analyse zu sprechen. Aus diesem Grund werden die Gründe genau, wie die Bücher sollten kultiviert werden sehr wichtig sind.

Die Bücher, die von vielen Sammlungen auf dem Planeten entstanden existieren. Er schlägt vor, Sie werden sicherlich die Hunderte Publikationen von zahlreichen Autoren sowie Verlagen aus der ganzen Welt zu entdecken. Wir erkennen an, dass solche Leute werden sicherlich das Buch von anderem Land benötigen. Wenn sie viel Geld zu bestellen sowie warten auf viele Male verbringen müssen, können Sie hier verschiedene Möglichkeiten bekommen. Genau hier können Sie bequem die einfachste Art und Weise erhalten, um das Buch als Advances In Financial Machine Learning direkt zu befestigen.

Ja, ist das Verfahren durch, um die Netzverbindung des Führungsbefestigungs, die geliefert werden, zu haben. Von einem solchen können Sie beiseite legen Schnäppchen zu erwerben und herunterladen. Es hängt von Ihnen ab und auch die Verbindung zu besuchen. Advances In Financial Machine Learning gehört zu den bekannten Büchern, die vom Fachverlag der Welt veröffentlicht werden. Viele Menschen erkennen mehr Führer über, speziell diesen hervorragenden Schriftsteller Job.

Wir machen Sie für dieses Buch zufrieden fühlen, könnten Sie sehen und fragen auch für andere zu dieser Veröffentlichung. Die Garantie ist, dass Sie das Buch schnell erhalten können und auch diese wunderbare Publikation für Ihr Leben. Veröffentlichung zu lesen, ist wirklich zu tun hatte. Wenn Sie es annehmen, wird sicherlich nicht in der Zwischenzeit nützlich sein, wird es viel wertvolle Dinge geben, auch manchmal. Durch dieses Buch zu lesen, können Sie wirklich das Gefühl, dass es sehr gebraucht Führung auf dieser Seite als Folge der sehr einfachen Möglichkeiten, geliefert zu bekommen.

Advances in Financial Machine Learning

Rezension

"In his new book Advances in Financial Machine Learning, noted financial scholar Marcos López de Prado strikes a well-aimed karate chop at the naive and often statistically overfit techniques that are so prevalent in the financial world today.  He points out that not only are business-as-usual approaches largely impotent in today's high-tech finance, but in many cases they are actually prone to lose money.  But López de Prado does more than just expose the mathematical and statistical sins of the finance world.  Instead, he offers a technically sound roadmap for finance professionals to join the wave of machine learning.  What is particularly refreshing is the author's empirical approach — his focus is on real-world data analysis, not on purely theoretical methods that may look pretty on paper but which in many cases are largely ineffective in practice. The book is geared to finance professionals who are already familiar with statistical data analysis techniques, but it is well worth the effort for those who want to do real state-of-the-art work in the field."—Dr. David H. Bailey, former Complex Systems Lead, Lawrence Berkeley National Laboratory. Co-discoverer of the BBP spigot algorithm "Finance has evolved from a compendium of heuristics based on historical financial statements to a highly sophisticated scientific discipline relying on computer farms to analyze massive data streams in real time. The recent highly impressive advances in machine learning (ML) are fraught with both promise and peril when applied to modern finance. While finance offers up the non-linearities and large data sets upon which ML thrives, it also offers up noisy data and the human element which presently lie beyond the scope of standard ML techniques. To err is human but if you really want to f**k things up, use a computer. Against this background, Dr. López de Prado has written the first comprehensive book describing the application of modern ML to financial modeling. The book blends the latest technological developments in ML with critical life lessons learned from the author's decades of financial experience in leading academic and industrial institutions. I highly recommend this exciting book to both prospective students of financial ML and the professors and supervisors who teach and guide them."—Prof. Peter Carr, Chair of the Finance and Risk Engineering Department, NYU Tandon School of Engineering "Marcos is a visionary who works tirelessly to advance the finance field. His writing is comprehensive and masterfully connects the theory to the application. It is not often you find a book that can cross that divide. This book is an essential read for both practitioners and technologists working on solutions for the investment community."—Landon Downs, President and co-Founder, 1QBit "Academics who want to understand modern investment management need to read this book. In it, Marcos Lopez de Prado explains how portfolio managers use machine learning to derive, test and employ trading strategies. He does this from a very unusual combination of an academic perspective and extensive experience in industry allowing him to both explain in detail what happens in industry and to explain how it works. I suspect that some readers will find parts of the book that they do not understand or that they disagree with, but everyone interested in understanding the application of machine learning to finance will benefit from reading this book."—Prof. David Easley, Cornell University. Chair of the NASDAQ-OMX Economic Advisory Board "For many decades, finance has relied on overly simplistic statistical techniques to identify patterns in data. Machine learning promises to change that by allowing researchers to use modern non-linear and highly-dimensional techniques, similar to those used in scientific fields like DNA analysis and astrophysics. At the same time, applying those machine learning algorithms to model financial problems would be dangerous. Financial problems require very distinct machine learning solutions. Dr. López de Prado's book is the first one to characterize what makes standard machine learning tools fail when applied to the field of finance, and the first one to provide practical solutions to unique challenges faced by asset managers. Everyone who wants to understand the future of finance should read this book."—Prof. Frank Fabozzi, EDHEC Business School. Editor of The Journal of Portfolio Management "This is a welcome departure from the knowledge hoarding that plagues quantitative finance. López de Prado defines for all readers the next era of finance: industrial scale scientific research powered by machines."—John Fawcett, Founder and CEO, Quantopian "Marcos has assembled in one place an invaluable set of lessons and techniques for practitioners seeking to deploy machine learning techniques in finance. If machine learning is a new and potentially powerful weapon in the arsenal of quantitative finance, Marcos' insightful book is laden with useful advice to help keep a curious practitioner from going down any number of blind alleys, or shooting oneself in the foot."—Ross Garon, Head of Cubist Systematic Strategies. Managing Director, Point72 Asset Management "The first wave of quantitative innovation in finance was led by Markowitz optimization. Machine Learning is the second wave and it will touch every aspect of finance. López de Prado's Advances in Financial Machine Learning is essential for readers who want to be ahead of the technology rather than being replaced by it."—Prof. Campbell Harvey, Duke University. Former President of the American Finance Association "The complexity inherent to financial systems justifies the application of sophisticated mathematical techniques. Advances in Financial Machine Learning is an exciting book that unravels a complex subject in clear terms. I wholeheartedly recommend this book to anyone interested in the future of quantitative investments."—Prof. John C. Hull, University of Toronto, Author of Options, Futures, and other Derivatives "Prado's book clearly illustrates how fast this world is moving, and how deep you need to dive if you are to excel and deliver top of the range solutions and above the curve performing algorithms... Prado's book is clearly at the bleeding edge of the machine learning world."—Irish Tech News "Financial data is special for a key reason: The markets have only one past. There is no 'control group', and you have to wait for true out-of-sample data. Consequently, it is easy to fool yourself, and with the march of Moore's Law and the new machine learning, it's easier than ever. López de Prado explains how to avoid falling for these common mistakes. This is an excellent book for anyone working, or hoping to work, in computerized investment and trading."—Dr. David J. Leinweber, Former Managing Director, First Quadrant, Author of Nerds on Wall Street: Math, Machines and Wired Markets"In his new book, Dr. López de Prado demonstrates that financial machine learning is more than standard machine learning applied to financial datasets. It is an important field of research in its own right. It requires the development of new mathematical tools and approaches, needed to address the nuances of financial datasets. I strongly recommend this book to anyone who wishes to move beyond the standard Econometric toolkit." —Dr. Richard R. Lindsey, Managing Partner, Windham Capital Management, Former Chief Economist, U.S. Securities and Exchange Commission"Dr. Lopez de Prado, a well-known scholar and an accomplished portfolio manager who has made several important contributions to the literature on machine learning (ML) in finance, has produced a comprehensive and innovative book on the subject. He has illuminated numerous pitfalls awaiting anyone who wishes to use ML in earnest, and he has provided much needed blueprints for doing it successfully. This timely book, offering a good balance of theoretical and applied findings, is a must for academics and practitioners alike." —Prof. Alexander Lipton, Connection Science Fellow, Massachusetts Institute of Technology. Risk's Quant of the Year (2000) "How does one make sense of todays’ financial markets in which complex algorithms route orders, financial data is voluminous, and trading speeds are measured in nanoseconds?  In this important book, Marcos López de Prado sets out a new paradigm for investment management built on machine learning. Far from being a 'black box' technique, this book clearly explains the tools and process of financial machine learning. For academics and practitioners alike, this book fills an important gap in our understanding of investment management in the machine age."—Prof. Maureen O'Hara, Cornell University. Former President of the American Finance Association "Marcos López de Prado has produced an extremely timely and important book on machine learning. The author's academic and professional first-rate credentials shine through the pages of this book - indeed, I could think of few, if any, authors better suited to explaining both the theoretical and the practical aspects of this new and (for most) unfamiliar subject. Both novices and experienced professionals will find insightful ideas, and will understand how the subject can be applied in novel and useful ways. The Python code will give the novice readers a running start, and will allow them to gain quickly a hands-on appreciation of the subject. Destined to become a classic in this rapidly burgeoning field."—Prof. Riccardo Rebonato, EDHEC Business School. Former Global Head of Rates and FX Analytics at PIMCO "A tour de force on practical aspects of machine learning in finance brimming with ideas on how to employ cutting edge techniques, such as fractional differentiation and quantum computers, to gain insight and competitive advantage. A useful volume for finance and machine learning practitioners alike."—Dr. Collin P. Williams, Head of Research, D-Wave Systems

Klappentext

Today's machine learning (ML) algorithms have conquered the major strategy games, and are routinely used to execute tasks once only possible by a limited group of experts. Over the next few years, ML algorithms will transform finance beyond anything we know today. Advances in Financial Machine Learning was written for the investment professionals and data scientists at the forefront of this evolution. This one-of-a-kind, practical guidebook is your go-to resource of authoritative insight into using advanced ML solutions to overcome real-world investment problems. It demystifies the entire subject and unveils cutting-edge ML techniques specific to investing. With step-by-step clarity and purpose, it quickly brings you up to speed on fully proven approaches to data analysis, model research, and discovery evaluation. Then, it shines a light on the nuanced details behind innovative ways to extract informative features from financial data. To streamline implementation, it gives you valuable recipes for high-performance computing systems optimized to handle this type of financial data analysis. Advances in Financial Machine Learning crosses the proverbial divide that separates academia and the industry. It does not advocate a theory merely because of its mathematical beauty, and it does not propose a solution just because it appears to work. The author transmits the kind of knowledge that only comes from experience, formalized in a rigorous manner. This turnkey guide is designed to be immediately useful to the practitioner by featuring code snippets and hands-on exercises that facilitate the quick absorption and application of best practices in the real world. Stop guessing and profit off data by: Tackling today's most challenging aspects of applying ML algorithms to financial strategies, including backtest overfitting Using improved tactics to structure financial data so it produces better outcomes with ML algorithms Conducting superior research with ML algorithms as well as accurately validating the solutions you discover Learning the tricks of the trade from one of the largest ML investment managers Put yourself ahead of tomorrow's competition today with Advances in Financial Machine Learning.

Alle Produktbeschreibungen

Produktinformation

Gebundene Ausgabe: 400 Seiten

Verlag: John Wiley & Sons Inc (21. Februar 2018)

Sprache: Englisch

ISBN-10: 1119482089

ISBN-13: 978-1119482086

Größe und/oder Gewicht:

16 x 2,5 x 23,1 cm

Durchschnittliche Kundenbewertung:

4.5 von 5 Sternen

5 Kundenrezensionen

Amazon Bestseller-Rang:

Nr. 3.016 in Fremdsprachige Bücher (Siehe Top 100 in Fremdsprachige Bücher)

Das Buch ist auch für nicht fnanzrelevante Bereiche in der AI interessant, da der Autor auf diverse Problem und Ansätze im Bereich Backtesting und Modellierung eingeht, die man generell beachten kann. Der Finanzteil ist sehr theoretisch und die Modelle sind mM. nach nur bedingt praxistauglich.Der Autor managed angeblich mehrere Fonds mit Milliardenbeträgen mit Hilfe von ML Techniken. Hier wäre es gut gewesen, wenn der Autor wenigsten ansatzweise etwas aus seiner Praxis geschrieben hätte.Ich würde mir das Buch wegen den allgemeinen ML Tipps wieder kaufen. Der Finanzteil fokusiert sich aus meiner Sicht jedoch auf Wirtschaftswissenschaftler mit geringem Praxisbezug.

Eine durchwegs interessante Abhandlung über den Prozess von den Rohdaten bis zur fertigen Handelsstrategie mit starkem Fokus auf die Fallstricke in den entsprechenen Bereichen.Als Berufseinsteiger mit geringen Programmierkenntnissen durchaus interessant aber gleichzeitig herausfordernd zu lesen. Als Zielgruppe werden erfahrene Programmierer und Entwickler sowie Finanzexperten genannt. In jedem Fall haben mir die Ausführungen von Lopez de Prado geholfen, verschiedene state of the art Machine Learning Anwendungen in der Finanzwirtschaft zu verstehen. Durch diesen Einblick in die weitläufigen Einsatzgebiete des Machine Learning bin ich nun sehr motiviert, mehr über diesen Bereich zu lernen und mein Wissen diesbezüglich auszubauen.Aus meiner Sicht (Berufseinsteiger Finanzbereich) durchaus eine Empfehlung. Interesse am Fach vorausgesetzt, gibt das Buch einen sehr guten Überblick über die Einsatzbereiche von Machine Learning und konnte in meinem Fall das Interesse an einer Vertiefung im Feld des Machine Learning wecken.

There was definitely a need for such a book, with so much material you will find difficult to find elsewhere.

I just finished a MSc in Financial Engineering and after handing in my thesis I was again struck by how difficult it is to find alpha signals using ML. This book starts where my MSc stopped and takes ML for financial mkts to the practical and useful level. This book is not a receipt on how to become rich overnight, it's a great book on how to become successful applying ML to financial mkts. It is not an easy read, but with a bit of patience and work (trying out the code and understanding the content) you will realise how valuable it really is.

This was a brilliant listen! Dr. López de Prado is spot-on with his assertions on off-the-shelf solutions and algorithms hardly ever being appropriate for financial machine learning applications.Anecdotally-derived, decision-based discretionary investments (made by discretionary PMs) are just that: anecdotal and, despite sometimes driving positive outcomes, they are rarely supported by solid empirically-provable evidence. An excellent job from an excellent scholar. Congratulations!

Advances in Financial Machine Learning PDF
Advances in Financial Machine Learning EPub
Advances in Financial Machine Learning Doc
Advances in Financial Machine Learning iBooks
Advances in Financial Machine Learning rtf
Advances in Financial Machine Learning Mobipocket
Advances in Financial Machine Learning Kindle

Advances in Financial Machine Learning PDF

Advances in Financial Machine Learning PDF

Advances in Financial Machine Learning PDF
Advances in Financial Machine Learning PDF

0 komentar:

Posting Komentar

Popular Posts

Recent Posts

Categories

Unordered List

Text Widget

Blog Archive